Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neuro-symbolic models combine deep learning and symbolic reasoning to produce better-performing hybrids. Not only do neuro-symbolic models perform better, but they also deal better with data scarcity, enable the direct incorporation of high-level domain knowledge, and are more explainable. However, these benefits come at the cost of increased complexity, which may deter the uninitiated from using these models. In this work, we present a framework to simplify the creation of neuro-symbolic models for tree crown delineation and tree species classification via the use of object-oriented programming and hyperparameter tuning algorithms. We show that models created using our framework outperform their non-neuro-symbolic counterparts by as much as two F1 points for crown delineation and three F1 points for species classification. Furthermore, our use of hyperparameter tuning algorithms allows users to experiment with multiple formulations of domain knowledge without the burden of manual tuning.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Tanentzap, Andrew J (Ed.)The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual canopy tree species through labeled data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees across 24 sites in the National Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1 km2shapefiles with individual tree species prediction, as well as crown location, crown area, and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of 6 species per site, ranging from 3 to 15 species per site. All predictions are openly archived and have been uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. We outline the potential utility and limitations of these data in ecology and computer vision research, as well as strategies for improving predictions using targeted data sampling.more » « less
-
Weinstein, Ben (Ed.)# Individual Tree Predictions for 100 million trees in the National Ecological Observatory Network Preprint: https://www.biorxiv.org/content/10.1101/2023.10.25.563626v1 ## Manuscript Abstract The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales allows an unprecedented view of forest ecosystems, forest restoration and responses to disturbance. To create detailed maps of tree species, airborne remote sensing can cover areas containing millions of trees at high spatial resolution. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual tree species using ground truthed data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees for 24 sites in the National Ecological Observatory Network. Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1km^2 shapefiles with individual tree species prediction, as well as crown location, crown area and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of six species per site, ranging from 3 to 15 species. All predictions were uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. These data can be used to study forest macro-ecology, functional ecology, and responses to anthropogenic change. ## Data Summary Each NEON site is a single zip archive with tree predictions for all available data. For site abbreviations see: https://www.neonscience.org/field-sites/explore-field-sites. For each site, there is a .zip and .csv. The .zip is a set 1km .shp tiles. The .csv is all trees in a single file. ## Prediction metadata *Geometry* A four pointed bounding box location in utm coordinates. *indiv_id* A unique crown identifier that combines the year, site and geoindex of the NEON airborne tile (e.g. 732000_4707000) is the utm coordinate of the top left of the tile. *sci_name* The full latin name of predicted species aligned with NEON's taxonomic nomenclature. *ens_score* The confidence score of the species prediction. This score is the output of the multi-temporal model for the ensemble hierarchical model. *bleaf_taxa* Highest predicted category for the broadleaf submodel *bleaf_score* The confidence score for the broadleaf taxa submodel *oak_taxa* Highest predicted category for the oak model *dead_label* A two class alive/dead classification based on the RGB data. 0=Alive/1=Dead. *dead_score* The confidence score of the Alive/Dead prediction. *site_id* The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *conif_taxa* Highest predicted category for the conifer model *conif_score* The confidence score for the conifer taxa submodel *dom_taxa* Highest predicted category for the dominant taxa mode submodel *dom_score* The confidence score for the dominant taxa submodel ## Training data The crops.zip contains pre-cropped files. 369 band hyperspectral files are numpy arrays. RGB crops are .tif files. Naming format is __, for example. "NEON.PLA.D07.GRSM.00583_2022_RGB.tif" is RGB crop of the predicted crown of NEON data from Great Smoky Mountain National Park (GRSM), flown in 2022.Along with the crops are .csv files for various train-test split experiments for the manuscript. ### Crop metadata There are 30,042 individuals in the annotations.csv file. We keep all data, but we recommend a filtering step of atleast 20 records per species to reduce chance of taxonomic or data cleaning errors. This leaves 132 species. *score* This was the DeepForest crown score for the crop. *taxonID*For letter species code, see NEON plant taxonomy for scientific name: https://data.neonscience.org/taxonomic-lists *individual*unique individual identifier for a given field record and crown crop *siteID*The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *plotID* NEON plot ID within the site. For more information on NEON sampling see: https://www.neonscience.org/data-samples/data-collection/observational-sampling/site-level-sampling-design *CHM_height* The LiDAR derived height for the field sampling point. *image_path* Relative pathname for the hyperspectral array, can be read by numpy.load -> format of 369 bands * Height * Weight *tile_year* Flight year of the sensor data *RGB_image_path* Relative pathname for the RGB array, can be read by rasterio.open() # Code repository The predictions were made using the DeepTreeAttention repo: https://github.com/weecology/DeepTreeAttentionKey files include model definition for a [single year model](https://github.com/weecology/DeepTreeAttention/blob/main/src/models/Hang2020.py) and [Data preprocessing](https://github.com/weecology/DeepTreeAttention/blob/cae13f1e4271b5386e2379068f8239de3033ec40/src/utils.py#L59).more » « less
-
Data on individual tree crowns from remote sensing have the potential to advance forest ecology by providing information about forest composition and structure with a continuous spatial coverage over large spatial extents. Classifying individual trees to their taxonomic species over large regions from remote sensing data is challenging. Methods to classify individual species are often accurate for common species, but perform poorly for less common species and when applied to new sites. We ran a data science competition to help identify effective methods for the task of classification of individual crowns to species identity. The competition included data from three sites to assess each methods’ ability to generalize patterns across two sites simultaneously and apply methods to an untrained site. Three different metrics were used to assess and compare model performance. Six teams participated, representing four countries and nine individuals. The highest performing method from a previous competition in 2017 was applied and used as a baseline to understand advancements and changes in successful methods. The best species classification method was based on a two-stage fully connected neural network that significantly outperformed the baseline random forest and gradient boosting ensemble methods. All methods generalized well by showing relatively strong performance on the trained sites (accuracy = 0.46–0.55, macro F1 = 0.09–0.32, cross entropy loss = 2.4–9.2), but generally failed to transfer effectively to the untrained site (accuracy = 0.07–0.32, macro F1 = 0.02–0.18, cross entropy loss = 2.8–16.3). Classification performance was influenced by the number of samples with species labels available for training, with most methods predicting common species at the training sites well (maximum F1 score of 0.86) relative to the uncommon species where none were predicted. Classification errors were most common between species in the same genus and different species that occur in the same habitat. Most methods performed better than the baseline in detecting if a species was not in the training data by predicting an untrained mixed-species class, especially in the untrained site. This work has highlighted that data science competitions can encourage advancement of methods, particularly by bringing in new people from outside the focal discipline, and by providing an open dataset and evaluation criteria from which participants can learn.more » « less
-
Grilli, Jacopo (Ed.)Broad scale remote sensing promises to build forest inventories at unprecedented scales. A crucial step in this process is to associate sensor data into individual crowns. While dozens of crown detection algorithms have been proposed, their performance is typically not compared based on standard data or evaluation metrics. There is a need for a benchmark dataset to minimize differences in reported results as well as support evaluation of algorithms across a broad range of forest types. Combining RGB, LiDAR and hyperspectral sensor data from the USA National Ecological Observatory Network’s Airborne Observation Platform with multiple types of evaluation data, we created a benchmark dataset to assess crown detection and delineation methods for canopy trees covering dominant forest types in the United States. This benchmark dataset includes an R package to standardize evaluation metrics and simplify comparisons between methods. The benchmark dataset contains over 6,000 image-annotated crowns, 400 field-annotated crowns, and 3,000 canopy stem points from a wide range of forest types. In addition, we include over 10,000 training crowns for optional use. We discuss the different evaluation data sources and assess the accuracy of the image-annotated crowns by comparing annotations among multiple annotators as well as overlapping field-annotated crowns. We provide an example submission and score for an open-source algorithm that can serve as a baseline for future methods.more » « less
An official website of the United States government
